107 research outputs found

    Drone congregation areas of red dwarf honeybee, Apis florea

    Get PDF
    The drones of dwarf honeybees assemble at the drone congregation areas close to small trees with dense leafage at the heights between 2 to 4 meters

    Automated grading of cerebral vasospasm to standardize computed tomography angiography examinations after subarachnoid hemorrhage

    Get PDF
    Background: Computed tomography angiography (CTA) is frequently used with computed tomography perfusion imaging (CTP) to evaluate whether endovascular vasospasm treatment is indicated for subarachnoid hemorrhage patients with delayed cerebral ischemia. However, objective parameters for CTA evaluation are lacking. In this study, we used an automated, investigator-independent, digital method to detect vasospasm, and we evaluated whether the method could predict the need for subsequent endovascular vasospasm treatment.Methods: We retrospectively reviewed the charts and analyzed imaging data for 40 consecutive patients with subarachnoid hemorrhages. The cerebrovascular trees were digitally reconstructed from CTA data, and vessel volume and the length of the arteries of the circle of Willis and their peripheral branches were determined. Receiver operating characteristic curve analysis based on a comparison with digital subtraction angiographies was used to determine volumetric thresholds that indicated severe vasospasm for each vessel segment. Results: The automated threshold-based volumetric evaluation of CTA data was able to detect severe vasospasm with high sensitivity and negative predictive value for predicting cerebral hypoperfusion on CTP, although the specificity and positive predictive value were low. Combining the automated detection of vasospasm on CTA and cerebral hypoperfusion on CTP was superior to CTP or CTA alone in predicting endovascular vasospasm treatment within 24 h after the examination. Conclusions: This digital volumetric analysis of the cerebrovascular tree allowed the objective, investigator-independent detection and quantification of vasospasms. This method could be used to standardize diagnostics and the selection of subarachnoid hemorrhage patients with delayed cerebral ischemia for endovascular diagnostics and possible interventions

    Posttraumatic cerebral venous sinus thrombosis: retrospective evaluation of risk factors, management and complications [Abstract]

    Get PDF
    Oral e-Poster Presentations - Booth 2: Trauma A, September 26, 2023, 1:00 PM - 2:30 PM Background: Up to date, there is no clear consensus on the management of posttraumatic cerebral venous sinus thrombosis (CVST). The challenge to establish a guideline in this disease is complicated by various coexisting injuries. This evaluation aims to identify risk factors, management and associated complications of posttraumatic CVST. Methods: A retrospective chart review of 341 traumatic brain injury patients admitted to the neurosurgical clinic from 2020 to 2022 was performed. Of those, 13 were diagnosed with posttraumatic CVST. In these patients, trauma mechanism, associated injuries, location of the CVST as well as treatment and possible complications were evaluated. Results: Mean age was 48 years (range: 23-84), with mainly male patients (n=8; 61.5%). Trauma mechanisms are illustrated in figure 1. Skull fractures, even though not dislocated were diagnosed in 11 patients (84.5%). Only two patients (15.3%) had CVST of the sagittal superior sinus, while most were diagnosed with CVST of the transverse (n=3, 23.0%), the sigmoid (n=4, 30.6%), or both, transverse and sigmoid sinus (n=4, 30.6%). These CVST were highly associated with skull base fractures p=0.02. Traumatic intracranial hemorrhage was evident in all patients, requiring surgery in half of the cases (Table 1). Half of all cases were treated with thrombosis prophylaxis only, while the remaining 6 (46.1%) received intravenous heparin being started at day 3 on average (range 1-8), leading to a progressive bleeding with the need for hemicraniectomy in 1 patient (7.6%). Conclusions: This study addresses the difficulty and inconsistency of the posttraumatic ST treatment. Due to the association with skull base fractures, we advocate performing a CT with contrast agent in a venous phase in these patients

    Sugar Intake Elicits Intelligent Searching Behavior in Flies and Honey Bees

    Get PDF
    We present a comparison of the sugar-elicited search behavior in Drosophila melanogaster and Apis mellifera. In both species, intake of sugar-water elicits a complex of searching responses. The most obvious response was an increase in turning frequency. However, we also found that flies and honey bees returned to the location of the sugar drop. They even returned to the food location when we prevented them from using visual and chemosensory cues. Analyses of the recorded trajectories indicated that flies and bees use two mechanisms, a locomotor pattern involving an increased turning frequency and path integration to increase the probability to stay close or even return to the sugar drop location. However, evidence for the use of path integration in honey bees was less clear. In general, walking trajectories of honey bees showed a higher degree of curvature and were more spacious; two characters which likely masked evidence for the use of path integration in our experiments. Visual cues, i.e., a black dot, presented underneath the sugar drop made flies and honey bees stay closer to the starting point of the search. In honey bees, vertical black columns close to the sugar drop increased the probability to visit similar cues in the vicinity. An additional one trial learning experiment suggested that the intake of sugar-water likely has the potential to initiate an associative learning process. Together, our experiments indicate that the sugar-elicited local search is more complex than previously assumed. Most importantly, this local search behavior appeared to exhibit major behavioral capabilities of large-scale navigation. Thus, we propose that sugar-elicited search behavior has the potential to become a fruitful behavioral paradigm to identify neural and molecular mechanisms involved in general mechanisms of navigation

    Quench Dynamics in Two-Dimensional Integrable SUSY Models

    Get PDF
    We analyse quench processes in two dimensional quantum field theories with infinite number of conservation laws which also include fermionic charges that close a N=1 supersymmetric algebra. While in general the quench protocol induces a breaking of supersymmetry, we show that there are particular initial states which ensure the persistence of supersymmetry also for the dynamics out of equilibrium. We discuss the conditions that identify such states and, as application, we present the significant cases of the Tricritical Ising Model and the Sine-Gordon model at its supersymmetric point. We also address the issue of the Generalized Gibbs Ensemble in the presence of fermionic conserved charges

    Pairing in nuclear systems: from neutron stars to finite nuclei

    Full text link
    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We focus on the links between many-body pairing as it evolves from the underlying nucleon-nucleon interaction and the eventual experimental and theoretical manifestations of superfluidity in infinite nuclear matter and of pairing in finite nuclei. We analyse the nature of pair correlations in nuclei and their potential impact on nuclear structure experiments. We also describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. Finally, we discuss recent investigations of ground-state properties of random two-body interactions where pairing plays little role although the interactions yield interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern Physic

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain
    corecore